Viral Epitranscriptomics

Bryan R. Cullen

Department of Molecular Genetics and Microbiology and Center for Virology Duke University Medical Center, Durham, NC

Viral and cellular mRNAs are subject to post-transcriptional modifications

- Several covalent modifications of individual nucletides in eukaryotic mRNAs have been reported at levels >0.1%.
- Of these, the most common is the addition of a methyl group to the N6 position of adenosine, called m⁶A.
- The presence of high level of m⁶A in viral mRNAs was first reported for influenza A virus by Krug et al in 1976 and subsequently for a range of viruses, including avian retroviruses (Kane and Beemon, 1985), but the function of m⁶A has remained unclear.

Viruses encoding RNAs with reported m⁶A residues

Virus	No. of m ⁶ A residues
RNA viruses	
Influenza A virus	~24
Avian sarcoma virus	13-15
Rous sarcoma virus	10-12
Feline leukemia virus	NA
HIV-1	10-14
Hepatitis C virus	~16
Flaviviruses*	5-12
DNA viruses	
Adenovirus	NA
SV40	NA
Herpes simplex virus 1	NA
KSHV	NA

Question:

- 1) Influenza A virus (IAV) was reported 40 years ago (Krug et al, 1976) to express RNAs that are highly m⁶A modified.
- 2) Does the cellular m⁶A machinery also affect IAV replication? In particular, does m⁶A addition boost IAV replication in the A549 lung epithelial cell line?

IAV infection induces factors that mediate m⁶A addition and detection

Overexpression of YTHDF2 strongly enhances IAV replication under non-spreading conditions

YTHDF2, but not YTHDF1, overexpression also increases IAV replication under spreading conditions

Loss of the m⁶A methyltransferase METTL3 strongly inhibits IAV replication

Mapping m⁶A sites on viral RNAs

Mapping m⁶A sites on IAV mRNAs by PAR-CLIP

Mapping m⁶A sites on IAV vRNAs by PAR-CLIP

Loss of m⁶A sites on the IAV HA segment only modestly affects viral spread

m⁶A sites on the IAV HA segment enhance HA mRNA and protein expression

Loss of m⁶A sites on the HA segment reduces IAV pathogenicity in vivo

DAA potently inhibits IAV replication in A549 cells

Conclusions

- 1) Influenza A virus (IAV) transcripts are extensively m⁶A modified.
- 2) Inhibition of m⁶A addition by mutational inactivation of METTL3, by mutagenesis of m⁶A addition sites or using the drug DAA inhibits IAV replication and pathogenesis.
- 3) Conversely, overexpression of the m⁶A reader protein YTHDF2 strongly enhances IAV replication.
- 4) We have also observed that m⁶A sites present on viral transcripts strongly enhance the replication of HIV-1 and SV40.

