Piggybacking-the-Winner

- how phage kill a coral reef -

photo by BZ

Forest Rohwer - San Diego State University

Coral reefs are declining worldwide

Local - Human habitation results in coral diseases - fishing (organic matter) & nutrient additions-

Global - Increasing CO2

-temperature change and decreasing pH-

Temperate phage must protect bacterial host

against other phage & protists (or they will be killed with their host cell)

dense cellular systems necessitate strong antipredator systems for lysogens

Piggyback-the-Winner is the ecological dynamic of increasing lysogeny with higher host densities

Healthy reef

~ 90% energy is loss at each trophic step

Humans kill the sharks & groupers

- fishing increased dramatically after WWII -

Fished reef

- 1) microbialization: shunting of energy away from macrobes to feed microbes
- 2) more potential pathogens because of prophage

DDAM

- DOC, disease, algae, microbes
- positive feedback that increases space for algae

Global survey of microbial dynamics on coral reefs

quibits for metagenomes

+
sequencing

benthic surveys & fish counts

Over 200 sites from central Pacific (Line Islands & USA protectorates), Sri Lanka & Caribbean

Microbialization is a global phenomenon & strongly correlated with human activity MFM Fairoz

Tracy McDole

Andi Haas

Increased Gammas/potential pathogens on degraded reefs

microbial metagenomes

WG-RAST annotations

Glycolysis is replaced by the Pentose Phosphate Pathway (PPP) on degraded reefs

Glycolysis
(healthy reefs) is
energy efficient
versus Pentose
Phosphate
Pathway (PPP;
degraded reefs)

Maximum Yield versus Power

Power to Yield Switch is Global (i.e., rise of the PPP & ED pathways)

50+ coral reef in central Pacific

microbial metagenomes

→
MG-RAST
annotations

We think it is decoupling between oxygen & sugar...the bubble hypothesis:)

POP experiments

coral & algae into incubation chambers

measure oxygen in gas & water

Macroalgae lose ~35% of oxygen as bubbles

Glucose-Oxygen Decoupling via bubbles favors anabolic metabolisms

Algae release oxygen

Coral holobionts hold onto their oxygen

The Lambda Switch

Heathy Reef Degraded Reef

Cynthia Silveira

Temperate life cycle should be favored under anabolic/decoupled conditions

Temperate phage must protect bacterial host against other phage &

protists (or they will be killed with their host cell)

dense microbial systems necessitate strong antipredator systems for lysogens

Piggyback-the-Winner is the ecological dynamic of increased lysogeny with higher host densities

Phage & plasmid encoded exotoxins

	Anthrax	Bacillus anthracis	Plasmid
	Botulism	Clostridium botulinum	Phage and Plasmid
СТХ	Cholera	Vibrio cholerae	Phage and Plasmid
DTX	Diphtheria	Corynebacterium diphtheriae	Phage
STX	Diarrheagenic <i>E.</i> coli	Escherichia coli (EHEC strains)	Phage
	Tetanus	Clostridium tetani	Plasmid
	Toxic shock	Staphylococcus aureus	Phage
SEA	Staph Food Poisoning	Staphylococcus aureus	Phage and Plasmid
	Scalded Skin Syndrome	Staphylococcus aureus	Phage and Plasmid
	Scarlet fever	Streptococcus pyogenes	Phage

- ask me ZOT toxin in CF & corals over beer -

Exotoxins kill eukaryotic cells, including protists

Phage & protist control marine microbial abundances

- typically about 10 phage:cell -

Kill-the-Winner/Lotka-Volterra dynamics

Kill-the-Winner (Thingstad et al.)

These dynamics are mass action driven...

Viral & microbial abundances do not linearly scale on coral reefs (Nature 2016)

Viral predation pressure is decoupled from mass action driven interactions

Viral & microbial abundances do not linearly scale within & across ecosystems

direct counts from ~20 ecosystems & 1,000s of samples

emphasis on marine microbial communities partially confused the issue because they are right at 106 microbes per ml

- low VMRs are indicative of lysogeny -

Microbial species diversity decreases with increasing abundance on coral reefs

Restriction enzymes, CRISPRs & other phage resistant mechanisms decrease with abundance

Viral communities are more temperate (carrying prophage) at higher cell abundances

Superinfection exclusion protect against other phage

sequences

reef boundary layer

Phage communities are more virulent at higher cell abundances found on degraded coral reefs

Prophage are protecting lysogens from protists Corollary: Coral disease is an emergent property

Cultured marine pathogens carry more prophage & virulence factors

all known marine pathogens

ID prophage
classify gene categories

In general: Main energy pathways define taxonomy/core & local conditions define mobile elements

coral reefs

holobiont-associated

Main Take Home Points

Overfishing reduces grazing pressure, initiating trophic cascades that favors microbes.

Decoupling of electron-donors (e.g., glucose) and electron-acceptors (i.e., oxygen) leads to anabolic metabolisms on degraded coral reefs. This favors integration of phage.

The fat & happy microbes on degraded reefs are more virulent because they carry prophage with exotoxins & other virulence factors to protect against protists.

Electron tranfer decoupling will favor proviruses in electron donor-heavy/high-cell abundance systems (e.g., multicellular organisms).

There are (at least) two ecological, metabolic steady states that the viruses are cueing onto...

Lysogenic versus lytic models of phage-host

Lotka-Volterra like models for lytic & temperate communities

Latin Hypercube Sampling Scheme

Parameter	Description
r	intrinsic growth rate of bacteria species
K	carrying capacity of bacteria community
d	infection rate of virulent phage species
c	burst size of virulent phage species
m	decay rate of virulent phage species
n	number of species in the community

Parameter	Description
\overline{r}	intrinsic growth rate of lysogen species
K	carrying capacity of lysogen community
β	induction rate of prophage species
c	burst size of temperate phage species
m	decay rate of temperate phage species
d	infection rate of temperate phage species
χ	lysogen species immunity
n	number of species in the community

Lysogenic and lytic models together

Toni Luque

Environmental Data

Emily Jasien

Don't forget the temperate viruses:)

Rohwer & Wegley-Kelly Lab (SDSU) Anca Segall (SDSU)

Barr, Jeremy Benler, Sean

Boling, Lance

Calhoun, Sandi

Cobián, Ana

Fairoz, MFM

Furlan, Mike

Galtier d'Auriac, Ines

George, Emma

Grasis, Juris

Green, Kevin

Haas, Andi

Hartmann, Aaron

Hester, Eric

Lim, Yanwei

Little, Mark

Paul, Lauren

Nguyen, Sophie

Quinn, Robby (UCSD)

Quistad, Steve

Ransome, Emma (SI)

Reyes, Brandon

Roach, Ty

Robinett, Nate

Sanchez, Savannah

Silveira, Cynthia

Talago, Natasha

Janouškovec, Jan

Knowles, Benjamin

Rita Auro

Luque Lab (SDSU) Emily Jasien

BioMath (SDSU)

Barbara Bailey Arlette Baljon Ben Felts Toni Luque Jim Nulton Peter Salamon

NOAA and SIO for shiptime

The \$\$\$:)

